

DNA copy number segmentation in cancer studies

Morgane Pierre-Jean joint work with : Pierre Neuvial, Guillem Rigaill

Centre National de Recherche en Génomique Humaine (CNRGH), Evry

April 3rd, 2019

Introduction

2 Example of one segmentation method

3 Generating data with known truth

Performance evaluation

Introduction

- 2) Example of one segmentation method
- 3 Generating data with known truth
- Performance evaluation
- 5 Conclusion

Alterations can be observed at several levels

- Gene expression
- Methylation
- DNA structure
- Mutations
- DNA copy number

Why study genetic alterations in cancers?

- Help to diagnosis
- Identify biomarkers linked to drug resistance
- Personalized treatments

Alterations can be observed at several levels

- Gene expression
- Methylation
- DNA structure
- Mutations
- DNA copy number

Why study genetic alterations in cancers?

- Help to diagnosis
- Identify biomarkers linked to drug resistance
- Personalized treatments

Morgane Pierre-Jean

How to measure DNA copy number more precisely?

- CGH arrays (measuring total DNA copy number)
- SNP arrays (measuring quantity of alleles for predefined positions)
- Sequencing technologies (WGS or WES)

Illustration of alterations at level of DNA copy number

Slide H. Bengtsson

Illustration of alterations at level of DNA copy number

Slide H. Bengtsson

Illustration of alterations at level of DNA copy number

Slide H. Bengtsson

Morgane Pierre-Jean

Total copy number
$$c_j = N_j^A + N_j^B$$

B allele fraction
$$b_j = \frac{N_j^B}{c_j}$$

Total copy number
$$c_j = N_j^A + N_j^B$$

B allele fraction $b_j = \frac{N_j^B}{c_j}$

Total copy number
$$c_j = N_j^A + N_j^B$$

B allele fraction $b_j = \frac{N_j^B}{c_j}$

Introduction

- Example of one segmentation method
- 3 Generating data with known truth
- 4) Performance evaluation
- 5 Conclusion

- Take the simple case : dimension is equal to 1 (d = 1) :
- Hypothesis : \mathcal{H}_0 : No breakpoint vs \mathcal{H}_1 : Exactly one breakpoint.
- The likelihood ratio statistic is given by $\max_{1 \le i \le n} |Z_i|$

$$Z_i = \frac{\left(\frac{S_i}{i} - \frac{S_n - S_i}{n - i}\right)}{\sqrt{\frac{1}{i} + \frac{1}{n - i}}},$$
(1)

And
$$S_i = \sum_{1 \le l \le i} y_l$$

- First breakpoint
- For each *i* : we compute *Z_i* :
 *b*₁ = arg max_{1 < i < n} *Z_i*

- First breakpoint
- For each *i* : we compute *Z_i* :
 *b*₁ = arg max_{1 < i < n} *Z_i*

- First breakpoint
- For each *i* : we compute *Z_i* :
 *b*₁ = arg max_{1 < i < n} *Z_i*

Second step of RBS

- Second breakpoint :
 - $\max_{1 \le i \le b_1} Z_i^2$ • $\max_{b_1 \le i \le n} Z_i^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Second step of RBS

- Second breakpoint :
 - $\max_{1 \le i \le b_1} Z_i^2$ • $\max_{b_1 \le i \le n} Z_i^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Second step of RBS

- Second breakpoint :
 - $\max_{1 \le i \le b_1} Z_i^2$ • $\max_{b_1 \le i \le n} Z_i^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Define decrease of heterozygosity to segment BAF

Decrease of heterozygosity $DH = 2 \times |BAF - \frac{1}{2}|$

Define decrease of heterozygosity to segment BAF

Decrease of heterozygosity $DH = 2 \times |BAF - \frac{1}{2}|$

Joint RBS (1)

- First breakpoint
- For each i : we compute $Z_i = (Z_1, Z_2)_i : t_1 =$ arg max $1 \le i \le n} ||Z_i||_2^2$

- First breakpoint
- For each i : we compute $Z_i = (Z_1, Z_2)_i : t_1 =$ arg max $_{1 < i < n} ||Z_i||_2^2$

- Second breakpoint :
 - $\max_{1 \le i \le t_1} \|Z_i\|_2^2$ • $\max_{t_1 < i \le n} \|Z_i\|_2^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

- Second breakpoint :
 - $\max_{1 \le i \le t_1} \|Z_i\|_2^2$ • $\max_{t_1 < i \le n} \|Z_i\|_2^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Joint RBS (3)

- Third breakpoint :
 - $\max_{1 \le i \le t_1} \|Z_i\|_2^2$
 - $\max_{t_1 < i \le t_2} \|Z_i\|_2^2$
 - $\max_{t_2 < i \le n} \|Z_i\|_2^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Joint RBS (3)

- Third breakpoint :
 - $\max_{1 \le i \le t_1} \|Z_i\|_2^2$
 - $\max_{t_1 < i \le t_2} \|Z_i\|_2^2$
 - $\max_{t_2 < i \le n} \|Z_i\|_2^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Joint RBS (3)

- Third breakpoint :
 - $\max_{1 \le i \le t_1} \|Z_i\|_2^2$
 - $\max_{t_1 < i \le t_2} \|Z_i\|_2^2$ • $\max_{t_2 < i < n} \|Z_i\|_2^2$
- Compute RSE for each segment.
- Keep the RSE which bring the maximum gain
- Add the breakpoint to the active set

Introduction

- Example of one segmentation method
- 3 Generating data with known truth
 - 4) Performance evaluation

5 Conclusion

Manual annotation

Oifficulty is controlled with the proportion of tumor cells

- Manual annotation
- Oifficulty is controlled with the proportion of tumor cells
- Resampling

Step 1- Annotate a real data set

Loss of one copy (Chr18)

Normal region (Chr21)

Step 1- Annotate a real data set

Loss of one copy (Chr18)

Normal region (Chr21)

Data generation by resampling

Step 2 - Synthetic data generation by resampling 100% tumor cells

Data generation by resampling

Step 2 - Synthetic data generation by resampling 100% tumor cells - same truth

70%- Using annotation from 100% data set

Loss of one copy (Chr18)

70%- Using annotation from 100% data set

Loss of one copy (Chr18)

50%- Using annotation from 100% data set

Loss of one copy (Chr18)

50%- Using annotation from 100% data set

Loss of one copy (Chr18)

Signal-to-noise can be controlled

data set 100% tumor cells

Signal-to-noise can be controlled

data set 79% tumor cells - same truth

Signal-to-noise can be controlled

data set 50% tumor cells - same truth

Features

- based on real copy-number data
- SNR driven by biological parameters
- allows for synthetic data generation

A resampling-based data generation framework

- truth (specified by user or automatic)
 - K breakpoint positions
 - K+1 copy-number state labels
- signal (generated from two public SNP array dillution series)
 - GSE11976 (Illumina, HCC1395) : 34, 50, 79 and 100% of tumor cells
 - GSE29172 (Affymetrix, NCI-H1395) : 30, 50, 70 and 100% of tumor cells

Introduction

- Example of one segmentation method
- 3 Generating data with known truth
- Performance evaluation
- Conclusion

Morgane Pierre-Jean

		Data set 1			C	Data set 2		
Statistic	Method	100%	70%	50%	100%	79%	50%	
(c, d)	PSCBS (Olshen et al., 2011)	0.89	0.60	0.16	0.97	0.88	0.51	
	GFLars (Vert and Bleakley, 2010)	0.60	0.42	0.14	0.97	0.91	0.60	
	RBS (Lebarbier, 2005)	0.93	0.63	0.22	0.97	0.95	0.75	
(c)	CBS(Olshen et al., 2004)	0.92	0.59	0.16	0.91	0.84	0.45	
	GFLars (Vert and Bleakley, 2010)	0.94	0.64	0.18	0.96	0.89	0.49	
	RBS (Lebarbier, 2005)	0.91	0.62	0.17	0.90	0.84	0.48	
	cghseg (Rigaill, 2010)	0.93	0.61	0.18	0.95	0.88	0.49	
(<i>d</i>)	CBS (Olshen et al., 2004)	0.35	0.17	0.10	0.71	0.83	0.64	
	GFLars (Vert and Bleakley, 2010)	0.35	0.18	0.10	0.71	0.84	0.66	
	RBS (Lebarbier, 2005)	0.34	0.17	0.09	0.69	0.83	0.65	
	cghseg (Rigaill, 2010)	0.35	0.18	0.10	0.70	0.84	0.67	

Introduction

- 2) Example of one segmentation method
- 3 Generating data with known truth
- Performance evaluation

Conclusion

Conclusions

- Perform joint segmentation is better
- acnr and jointseg are available on cran
- Work published (Pierre-Jean et al., 2015)
- How to detect change-point in the whole distribution ?
 A. Célisse's talk

Future works at CNRGH

- Florence Mauger, PhD and Nouara Oussada, M2 Genhiome
- circulating DNA (plasma)
- Project on WGS data
- Context : tumoral cells detection
- Performance evaluation of 3 pipelines : ichorCNA, QDNAseq and CNAnorm

Thank you for your attention

Thanks to Pierre Neuvial, Guillem Rigaill

- Gey, S. and Lebarbier, E. (2008). Using CART to detect multiple change points in the mean for large sample. Technical report, Statistics for Systems Biology research group.
- Lebarbier, E. (2005). Detecting multiple change-points in the mean of gaussian process by model selection. Signal processing, 85(4) :717-736.
- Olshen, A. B., Bengtsson, H., Neuvial, P., Spellman, P. T., Olshen, R. A., and Seshan, V. E. (2011). Parent-specific copy number in paired tumor-normal studies using circular binary segmentation. *Bioinformatics*, 27(15) :2038–2046.
- Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. *Biostatistics*, 5(4):557–572.
- Pierre-Jean, M., Rigaill, G., and Neuvial, P. (2015). Performance evaluation of DNA copy number segmentation methods. *Briefings in Bioinformatics*, 16(4):600–615.
- Rigaill, G. (2010). Pruned dynamic programming for optimal multiple change-point detection. Technical report, http://arXiv.org/abs/1004.0887.
- Vert, J.-P. and Bleakley, K. (2010). Fast detection of multiple change-points shared by many signals using group LARS. Advances in Neural Information Processing Systems, 23 :2343–2351.