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Introduction Differential expression studies in cancer research

Example: Leukemia data set

o Expression measurements (MRNA) of m = 12625 genes in n = 79
cancer patients:
@ Two groups of patients:

e BCR/ABL: 37 patients
o NEG: 42 patients

Question: find genes whose average expression differs between the two
groups
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Introduction Differential expression studies in cancer research

p-values
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p-value = blue area under the curve
Here: No evidence of difference between groups
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Introduction Differential expression studies in cancer research

p-values

33232_at: stat= 4.46;p= 2.7e-05
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p-value = blue area under the curve
Here: Some evidence of difference between groups. “Significant”?
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Large-scale inference

@ Setup: one statistical test for each gene g

o e.g. Student's t test of Hg 4: no difference between group means

@ Goal: select a subset S of genes with a “small” number V/(S) of false
positives (genes in S but for which Hp 4 is true)

Step 1 (user): choose a (multiple testing) risk of interest

Q@ P(V(S) > 0): Family-Wise Error Rate
@ E(V(S)/(]S] v 1)): False Discovery Rate

and an acceptable target level for this risk: «

Step 2 (statistician): select S satisfying the desired guarantee

@ Bonferroni, Bonferroni-Holm, Hommel, ...
@ Benjamini-Hochberg, Storey, ...

v

Pierre Neuvial (IMT) Post hoc inference via multiple testing Math4Genomics, 2018-05-23 9 /44



ELe ol
Example: FWER and FDR thresholding

State of the art answer

With o« = 0.05,
© FWER control: |S;| = 20: 1635_at, 1636_g_at, 1674_at. ..
41815_at
@ FDR control: |S;| = 163: 1000_at, 1001_at, 1002_f_at. ..
1148_s_at
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Example: no multiple testing correction
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Example: FWER thresholding (Holm-Bonferroni)
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Example: FDR thresholding (BH)
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Post hoc questions

Can we incorporate prior biological knowledge?

e “fold change” (= ratio between group means)
@ gene pathways

Can we “put a human into the loop™?

@ S = my favorite genes
e inferenceone.g. S=S5US], or S=5\S}
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User-defined selection 1: volcano plot

-log(p-value)
3
1

Fold change
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Introduction Multiple testing

User-defined selection 2: top k genes
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Introduction Multiple testing

User-defined selection 3: gene pathways

PLOD2 IES6 INOBOC

Pierre Neuvial (IMT) Post hoc inference via multiple testing Math4Genomics, 2018-05-23 17 / 44



Introduction Multiple testing

User-defined selection: toy example

Classical multiple testing Post hoc inference (= our goal)
o w0 e w 0 » w0 w ow
FDR < 25% With probability > 75%

|ISNH1i| > 2 and |5lﬂ7-[1| >1
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Introduction Post hoc inference

The need for post hoc inference

Challenges

e FDR control can be misleading (see next slide!)
@ large-scale multiple testing is exploratory in nature
@ no formal statistical guarantee on such user-defined selections

Proposal: post hoc confidence bounds

e H ={1,...m}: m null hypotheses to be tested

@ Ho C H: true null hypotheses, mg = |Ho|

o Hi=H \ Ho

e V(S) =|SNHo|: number of false postives in S C H

Goal: find V,, such that

P(vSC{1...m}, V(S) < Vu(§)) 21-a
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Introduction Post hoc inference

FDR control can be misleading
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Post hoc inference
Related works: selective inference

for a specific selection rule

Inference for a specific selection rule S

@ Lockhart et al. (2014), Fithian et al. (2014)

for an arbitrary, pre-decided selection rule

Inference for an arbitrary selection rule, to be chosen before looking at the
data

e Benjamini and Yekutieli (2005)

Omnibus

Inference simultaneously over all S C {1,..., m}, possibly chosen
after looking at the data

@ Genovese and Wasserman (2006), Goeman and Solari (2011), Berk et
al. (2013)
Post hoc inference via multiple testing Math4Genomics, 2018-05-23 21/ 461




Post hoc bounds from JER control JER control: definition and associated bounds

Reference family: basic idea

Remark: for any S C H, we have V(S) < |SN R¢|+ V(R)
Proof: V(S)=|SNHo| =|SNHoNR|+|SNHoNR|

R’

Reference family

Idea: build a family of sets (Ry, ..., Rk) for which we have an upper bound
on V(Ry) for each k.
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Post hoc bounds from JER control JER control: definition and associated bounds

Post hoc bound via JER control

Definition (Joint Family-Wise Error Rate control)
Let R = (Rk)« be a reference family of subsets of .

JER(R) :=P(3k, V(Rk) > k) <«
That is, £ = {Vk : V(Rk) < k — 1} is of probability > 1 — «

Proposition: post hoc upper bound on the number of false positives
On the event &, for any set S C {1,...m},

V(S) <|S|A mkin{\Sﬁ Ri| + k—1}

Recall: V(S) <|SN R+ V(R)

Applicable to any number of possibly data-driven sets! J
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Post hoc bounds from JER control JER control: definition and associated bounds

Post hoc inference: toy example

Classical multiple testing Post hoc inference
° T T T T T T el T : T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
FDR < 25% With probability > 75%

|ISNH1| >2and ‘SlﬂHﬂ >1
How can JER control be achieved?
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Post hoc bounds from JER control JER control based on Simes’ inequality

Simes-based! JER control and post hoc bound
Simes’ inequality
o If the p-values (p;), 1 < i < m, are independent then
P(3k € {1,...,mo} : puey) < ak/mg) = a

e Under some forms of positive dependence (PRDS(Hp)): < «

(PRDS = Positive Regression Dependency on a Subset)

Corollary: Simes-based JER control and post hoc bound
Under PRDS, the Simes reference family (R ), with

Rk ={1<i<m: pi<ak/m}

achieves JER control at level o and thus provides a post hoc bound

'R. J. Simes. Biometrika 73.3 (1986), pp. 751-754.
Post hoc inference via multiple testing Math4Genomics, 2018-05-23 25 / 44



Post hoc bounds from JER control JER control based on Simes’ inequality

Simes-based JER control and post hoc bound

Post hoc bound for the Simes family
Under PRDS, with probability larger than 1 — «, for any S,

V(S) < |S] /\mkin Zl{p; >ak/m}+k—1
ieS

Comments
@ Recovers the closed testing bound of Goeman and Solari (2011)
@ JER: a generic device to build post hoc bounds
e Independence/PRDS assumption:

e can we obtain dependence-free JER control?
e how sharp is the Simes inequality under PRDS?
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Post hoc bounds from JER control JER control based on Simes’ inequality

Application: Leukemia data set

bourgon method
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Post hoc bounds from JER control Limitations of Simes-based JER control

Dependence-free JER control?

Under arbitrary dependence, with probability larger than 1 — «, for any S,

V(S) <|S|A mkin Zl{p,- > a/Cnk/m}+k—1
ieS

)

Cn =71 k71 ~ log(m): Hommel's correction factor for dependency?

Dependence-free adjustment is not a sensible objective

@ implies adjusting to a worst case dependency
@ very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

2G Hommel. “Tests of the overall hypothesis for arbitrary dependence structures”.
Biometrische Zeitschrift 25.5 (1983), pp. 423-430.
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Post hoc bounds from JER control Limitations of Simes-based JER control

Sharpness and conservativeness of the Simes family

Simes’ equality is sharp under independence, but conservative under positive
dependence.

Conservativeness of JER control under PRDS

Example: Gaussian equi-correlation, white setting (mo = m = 1,000):
Test statistics ~ A(0,X) with X; =1 and X;; = p for i # j.

Equi-correlation level: p | 0 0.1 | 0.2 0.4 || 0.8
Achieved JER xa~! 0.99 | 0.85 | 0.72 || 0.42 || 0.39

Can we build a family achieving sharper JER control?
We want to be adaptive to dependency
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Calibration of a rejection template
JER control with A-calibration

Rejection template

Consider a reference family R\ = (Rk(\))k, where

Rk(/\) = {1 <i<m: p < tk()\)}
where t,(0) = 0 and tx(-) is non-decreasing and left-continuous on [0, 1]
e Example (Simes family): tx(\) = Ak/m

Associated rejection template: collection (tx(A\))x forall 0 <A <1

Single-step A-calibration

)\(a):max{)\>0 IP’(mkm{ k1< (kHo)>} <)\> <a}

The family R (4) controls JER at level a.

4
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Adaptive JER control Calibration of a rejection template

Example: Gaussian location model

Setting: X ~ N (11, L), pi = 29(|Xi|)

)\(O[) = max {)\ 2 0: PZNN(072)<ml(in {tk_l <26(|Z(k)|)>} S )\) S Oé}
yields JER(%)\(Q)) <a

Choice of the template

o Linear template: t,(\) = Ak/m (generalizes Simes)
o Balanced template: t,()) such that t; ' (20(| X(x)|)) ~ U[0,1]

A-calibration

e If X is known, A\(«) can be calibrated by Monte-Carlo
e If ¥ is unknown, A(«) can be calibrated by sign-flipping

v
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control with A-calibration for the linear template

Example under positive dependency (Gaussian equi-correlation)

% === o
=
- N
i =
24 =] S 4 -
= 3 .
‘0 0“ 0‘2 0.‘3 O‘A 0.‘5 0‘6 0.‘7 0‘5 0.‘9 g 1 . . ! . ’ . .
P 0 20 40 60 80 100
With probability > 1 — a = 75%:
te(a) Lower bound on |S N H;|

ak/m ISNHi|>2and | NHi>1
Ma)k/m |SNHi| >3 and | NHy| > 2
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Linear template, known dependence (calibration by Monte-Carlo)

e X; ~ N(0,1) under Hy

x .
w Linear family -
2 ~oracte e X; ~ N(f,1) under Hy
g o
g S olumer e cor(X, X;) = p for

010- | 75_]

o =025
020~ &
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Linear template, unknown dependence (calibration by sign-flipping)

Empirical JER

Pierre Neuvial (IMT)

p=04

Linear family
El —] Olracle
n Simes
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© Single Step

~— Step down

S
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660

Post hoc inference via multiple testing

e X; ~ N(0,1) under Hy
e Xi ~N(f,1) under H;
e cor(Xj, Xj) = p for

i #]
@ a=0.25
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Balanced template, known dependence (calibration by Monte-Carlo)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Balanced template, unknown dependence (calibration by sign-flipping)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

Estimation power for under independence
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Adaptive JER control Application: Leukemia data set

A-calibration by permutations

Aim: calculate A\(«)
M) = max {)\ >0: P(mkin {tk—l (P(k:Ho))} < A) < a}

Idea: adapt to dependency via permutations
For two-sample tests, the distribution of

min { ;" (Ppero)) |

can be sampled from using permutations of the group labels
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations

bourgon method
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e Linear, single step
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations

bourgon method
1.00-

e Linear, single step

Linear, step down

~J
w

——— Balanced, single step
—— Balanced, step down
~——— Simes

Simes, adaptive

Upper confidenee bound on=FDP
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Summary

The need for post hoc inference
@ Need to account for multiple comparisons
@ FDR control can be misleading
@ Post hoc inference: inference on user-defined sets of hypotheses

Contributions

@ JER control induces post hoc bounds
e Existing bounds recovered from probabilistic inequalities (Simes)
@ Framework to build adaptive JER control

e permutation-based JER calibration for two-sample tests

Results not discussed here

@ Step-down procedures (adaptation to |Hol)
@ Detection power: connection to “higher criticism” in a sparse setting
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Application: Levkemia data sct
Ongoing/future works

Statistics

@ Choice of the template and its size
@ Structured rejection sets: algorithms and statistical results

Applications
o GWAS
o differential expression
@ motif enrichment analyses

Software

@ R package sansSouci: https://github.com/pneuvial /sanssouci
@ visualization tools (shiny apps)
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Adaptive JER control Application: Leukemia data set

useR!12019: July 9-12 in Toulouse

See http://user2019.r-project.org/
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