Post hoc inference via multiple testing

Pierre Neuvial

Institut de Mathématiques de Toulouse

with Gilles Blanchard, Etienne Roquain, Benjamin Sadacca

Arxiv preprint: https://arxiv.org/abs/1703.02307 R package http://github.com/pneuvial/sanssouci

Math4Genomics, 2018-05-23

Outline

- Introduction
 - Differential expression studies in cancer research
 - Multiple testing
 - Post hoc inference
- Post hoc bounds from JER control
 - JER control: definition and associated bounds
 - JER control based on Simes' inequality
 - Limitations of Simes-based JER control
- Adaptive JER control
 - Calibration of a rejection template
 - Numerical experiments for Gaussian equi-correlation
 - Application: Leukemia data set

Example: Leukemia data set

- Expression measurements (mRNA) of m = 12625 genes in n = 79 cancer patients:
- Two groups of patients:
 - BCR/ABL: 37 patients
 - NEG: 42 patients

Question: find genes whose average expression differs between the two groups

p-values

33231_at:

stat = 1.27 ; p = 0.21

p-value = blue area under the curve

Here: No evidence of difference between groups

p-values

33232_at:

stat = 4.46; p = 2.7e-05

p-value = blue area under the curve

Here: Some evidence of difference between groups. "Significant"?

Multiple testing (m = 48)

Example of pure (independent) noise:

Multiple testing (m = 192)

Example of pure (independent) noise:

Multiple testing (m = 192)

First 192 genes of the Leukemia data set:

Large-scale inference

- ullet Setup: one statistical test for each gene g
 - ullet e.g. Student's t test of $H_{0,g}$: no difference between group means
- Goal: select a subset S of genes with a "small" number V(S) of false positives (genes in S but for which $H_{0,g}$ is true)

Step 1 (user): choose a (multiple testing) risk of interest

- $\mathbb{P}(V(S) > 0)$: Family-Wise Error Rate

and an acceptable target level for this risk: α

Step 2 (statistician): select S satisfying the desired guarantee

- 1 Bonferroni, Bonferroni-Holm, Hommel, ...
- Benjamini-Hochberg, Storey, . . .

Example: FWER and FDR thresholding

State of the art answer

With $\alpha = 0.05$,

- FWER control: $|S_1| = 20$: 1635_at, 1636_g_at, 1674_at... 41815 at
- **②** FDR control: $|S_2| = 163$: 1000_at, 1001_at, 1002_f_at... 1148_s_at

Example: no multiple testing correction

Example: FWER thresholding (Holm-Bonferroni)

Example: FDR thresholding (BH)

Post hoc questions

Can we incorporate prior biological knowledge?

- "fold change" (= ratio between group means)
- gene pathways

Can we "put a human into the loop"?

- S = my favorite genes
- ullet inference on e.g. $S=S_1\cup S_1'$, or $S=S_2\setminus S_2'$

User-defined selection 1: volcano plot

User-defined selection 2: top k genes

User-defined selection 3: gene pathways

User-defined selection: toy example

With probability $\geq 75\%$ $|S \cap \mathcal{H}_1| \ge 2$ and $|S' \cap \mathcal{H}_1| \ge 1$

The need for post hoc inference

Challenges

- FDR control can be misleading (see next slide!)
- large-scale multiple testing is exploratory in nature
- no formal statistical guarantee on such user-defined selections

Proposal: post hoc confidence bounds

- $\mathcal{H} = \{1, \dots m\}$: m null hypotheses to be tested
- $\mathcal{H}_0 \subset \mathcal{H}$: true null hypotheses, $m_0 = |\mathcal{H}_0|$
- $\mathcal{H}_1 = \mathcal{H} \setminus \mathcal{H}_0$
- $V(S) = |S \cap \mathcal{H}_0|$: number of false postives in $S \subset \mathcal{H}$

Goal: find \overline{V}_{α} such that

$$\mathbb{P}\left(\forall S \subset \{1 \dots m\}, \ V(S) \leq \overline{V}_{\alpha}(S)\right) \geq 1 - \alpha$$

FDR control can be misleading

Related works: selective inference

for a specific selection rule

Inference for a specific selection rule S

• Lockhart et al. (2014), Fithian et al. (2014)

for an arbitrary, pre-decided selection rule

Inference for an arbitrary selection rule, to be chosen before looking at the data

Benjamini and Yekutieli (2005)

Omnibus

Inference simultaneously over all $S \subset \{1,\ldots,m\}$, possibly chosen after looking at the data

• Genovese and Wasserman (2006), Goeman and Solari (2011), Berk et al. (2013)

Reference family: basic idea

Remark: for any $S \subset \mathcal{H}$, we have $V(S) \leq |S \cap R^c| + V(R)$

Proof:
$$V(S) = |S \cap \mathcal{H}_0| = |S \cap \mathcal{H}_0 \cap R^c| + |S \cap \mathcal{H}_0 \cap R|$$

Reference family

Idea: build a family of sets (R_1, \ldots, R_K) for which we have an upper bound on $V(R_k)$ for each k.

Post hoc bound via JER control

Definition (Joint Family-Wise Error Rate control)

Let $\mathfrak{R} = (R_k)_k$ be a reference family of subsets of \mathcal{H} .

$$\mathsf{JER}(\mathfrak{R}) := \mathbb{P}(\exists k, V(R_k) \geq k) \leq \alpha$$

That is, $\mathcal{E} = \{ \forall k : V(R_k) \leq k - 1 \}$ is of probability $\geq 1 - \alpha$

Proposition: post hoc upper bound on the number of false positives

On the event \mathcal{E} , for any set $S \subset \{1, \dots m\}$,

$$V(S) \le |S| \wedge \min_{k} \{|S \cap R_{k}^{c}| + k - 1\}$$

Recall: $V(S) \leq |S \cap R^c| + V(R)$

Applicable to any number of possibly data-driven sets!

Post hoc inference: toy example

How can JER control be achieved?

100

Simes-based¹ JER control and post hoc bound

Simes' inequality

• If the *p*-values (p_i) , $1 \le i \le m$, are independent then

$$\mathbb{P}(\exists k \in \{1, \dots, m_0\} : p_{(k:\mathcal{H}_0)} \leq \alpha k/m_0) = \alpha$$

• Under some forms of positive dependence (PRDS(\mathcal{H}_0)): $\leq \alpha$

(PRDS = Positive Regression Dependency on a Subset)

Corollary: Simes-based JER control and post hoc bound Under PRDS, the Simes reference family $(R_k)_k$, with

$$R_k = \{1 \le i \le m : p_i \le \alpha k/m\}$$

achieves JER control at level $\boldsymbol{\alpha}$ and thus provides a post hoc bound

¹R. J. Simes. *Biometrika* 73.3 (1986), pp. 751–754.

Simes-based JER control and post hoc bound

Post hoc bound for the Simes family

Under PRDS, with probability larger than $1 - \alpha$, for any S,

$$V(S) \leq |S| \wedge \min_{k} \left\{ \sum_{i \in S} \mathbf{1} \left\{ p_i > \alpha k/m \right\} + k - 1 \right\}.$$

Comments

- Recovers the closed testing bound of Goeman and Solari (2011)
- JER: a generic device to build post hoc bounds
- Independence/PRDS assumption:
 - can we obtain dependence-free JER control?
 - how sharp is the Simes inequality under PRDS?

Application: Leukemia data set

Dependence-free JER control?

Under arbitrary dependence, with probability larger than $1-\alpha$, for any ${\cal S}$,

$$V(S) \leq |S| \wedge \min_{k} \left\{ \sum_{i \in S} \mathbf{1} \left\{ p_{i} > \alpha / C_{m} k / m \right\} + k - 1 \right\},$$

 $C_m = \sum_{k=1}^m k^{-1} \sim \log(m)$: Hommel's correction factor for dependency²

Dependence-free adjustment is not a sensible objective

- implies adjusting to a worst case dependency
- very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

²G Hommel. "Tests of the overall hypothesis for arbitrary dependence structures". Biometrische Zeitschrift 25.5 (1983), pp. 423–430.

Sharpness and conservativeness of the Simes family

Simes' equality is sharp under independence, but conservative under positive dependence.

Conservativeness of JER control under PRDS

Example: Gaussian equi-correlation, white setting $(m_0 = m = 1,000)$: Test statistics $\sim \mathcal{N}(0,\Sigma)$ with $\Sigma_{ii} = 1$ and $\Sigma_{ij} = \rho$ for $i \neq j$.

Equi-correlation level: ρ	0	0.1	0.2	0.4	8.0
Achieved JER $\times \alpha^{-1}$	0.99	0.85	0.72	0.42	0.39

Can we build a family achieving sharper JER control?

We want to be adaptive to dependency

JER control with λ -calibration

Rejection template

Consider a reference family $\mathfrak{R}_{\lambda} = (R_k(\lambda))_k$, where

$$R_k(\lambda) = \{1 \le i \le m : p_i \le t_k(\lambda)\}$$

where $t_k(0)=0$ and $t_k(\cdot)$ is non-decreasing and left-continuous on [0,1]

• Example (Simes family): $t_k(\lambda) = \lambda k/m$

Associated **rejection template**: collection $(t_k(\lambda))_k$ for all $0 \le \lambda \le 1$

Single-step λ -calibration

$$\lambda(\alpha) = \max\left\{\lambda \geq 0 \ : \ \mathbb{P}\bigg(\min_{k} \left\{t_{k}^{-1}\left(p_{(k:\mathcal{H}_{0})}\right)\right\} \leq \lambda\bigg) \leq \alpha\right\}$$

The family $\mathfrak{R}_{\lambda(\alpha)}$ controls JER at level α .

Example: Gaussian location model

Setting: $X \sim \mathcal{N}(\mu, \Sigma)$, $p_i = 2\overline{\Phi}(|X_i|)$

$$\lambda(\alpha) = \max\left\{\lambda \geq 0 \ : \ \mathbb{P}_{Z \sim \mathcal{N}(0,\Sigma)}\bigg(\min_{k}\left\{t_{k}^{-1}\left(2\overline{\Phi}(|Z_{(k)}|)\right)\right\} \leq \lambda \right) \leq \alpha\right\}$$

yields $JER(\mathfrak{R}_{\lambda(\alpha)}) \leq \alpha$

Choice of the template

- Linear template: $t_k(\lambda) = \lambda k/m$ (generalizes Simes)
- Balanced template: $t_k(\lambda)$ such that $t_k^{-1}(2\overline{\Phi}(|X_{(k)}|)) \sim \mathcal{U}[0,1]$

λ -calibration

- If Σ is known, $\lambda(\alpha)$ can be calibrated by Monte-Carlo
- If Σ is unknown, $\lambda(\alpha)$ can be calibrated by sign-flipping

JER control with λ -calibration for the linear template

Example under positive dependency (Gaussian equi-correlation)

With probability $\geq 1 - \alpha = 75\%$:

$t_k(lpha)$	Lower bound on $ S \cap \mathcal{H}_1 $		
$\alpha k/m$	$ S\cap \mathcal{H}_1 \geq 2$ and $ S'\cap \mathcal{H}_1 \geq 1$		
$\lambda(\alpha)k/m$	$ S \cap \mathcal{H}_1 \geq 3$ and $ S' \cap \mathcal{H}_1 \geq 2$		

Linear template, known dependence (calibration by Monte-Carlo)

- $X_i \sim \mathcal{N}(0,1)$ under H_0
- $X_i \sim \mathcal{N}(\bar{\mu}, 1)$ under H_1
- \bullet cor $(X_i, X_i) = \rho$ for $i \neq i$
- $\alpha = 0.25$

Simes Single Step

Linear template, unknown dependence (calibration by sign-flipping)

- $X_i \sim \mathcal{N}(0,1)$ under H_0
- $X_i \sim \mathcal{N}(\bar{\mu}, 1)$ under H_1
- \bullet cor $(X_i, X_i) = \rho$ for $i \neq i$
- $\alpha = 0.25$

Single Step

Balanced template, known dependence (calibration by Monte-Carlo)

- $X_i \sim \mathcal{N}(0,1)$ under H_0
- ullet $X_i \sim \mathcal{N}(ar{\mu},1)$ under H_1
- $\operatorname{cor}(X_i, X_j) = \rho$ for $i \neq j$
- $\alpha = 0.25$

Balanced template, unknown dependence (calibration by sign-flipping)

- $X_i \sim \mathcal{N}(0,1)$ under H_0
- ullet $X_i \sim \mathcal{N}(ar{\mu},1)$ under H_1
- $\operatorname{cor}(X_i, X_j) = \rho$ for $i \neq j$
- $\alpha = 0.25$

Estimation power for under independence

- ullet $X_i \sim \mathcal{N}(0,1)$ under H_0
- ullet $X_i \sim \mathcal{N}(ar{\mu},1)$ under H_1
- $\operatorname{cor}(X_i, X_j) = 0$ for $i \neq j$
- $\bar{\mu} = 2$
- Estimation power: $E(\overline{S}(\mathcal{H}_1))/m_1$

λ -calibration by permutations

Aim: calculate $\lambda(\alpha)$

$$\lambda(\alpha) = \max\left\{\lambda \geq 0 \ : \ \mathbb{P}\bigg(\min_{k} \left\{t_{k}^{-1}\left(p_{(k:\mathcal{H}_{0})}\right)\right\} \leq \lambda\bigg) \leq \alpha\right\}$$

Idea: adapt to dependency via permutations

For two-sample tests, the distribution of

$$\min_{k} \left\{ t_{k}^{-1} \left(p_{(k:\mathcal{H}_{0})} \right) \right\}$$

can be sampled from using permutations of the group labels

Improved confidence envelope using permutations

Improved confidence envelope using permutations

Improved confidence envelope using permutations

Summary

The need for post hoc inference

- Need to account for multiple comparisons
- FDR control can be misleading
- Post hoc inference: inference on *user-defined* sets of hypotheses

Contributions

- JER control induces post hoc bounds
- Existing bounds recovered from probabilistic inequalities (Simes)
- Framework to build adaptive JER control
 - permutation-based JER calibration for two-sample tests

Results not discussed here

- ullet Step-down procedures (adaptation to $|\mathcal{H}_0|$)
- Detection power: connection to "higher criticism" in a sparse setting

Ongoing/future works

Statistics

- Choice of the template and its size
- Structured rejection sets: algorithms and statistical results

Applications

- GWAS
- differential expression
- motif enrichment analyses

Software

- R package sansSouci: https://github.com/pneuvial/sanssouci
- visualization tools (shiny apps)

useR!2019: July 9-12 in Toulouse

See http://user2019.r-project.org/