Use Case of a RNA-Seq assembly

IPS2 Plant Institute of Paris Saclay Genomic Networks V. Brunaud

RNASeq technology

RNASeq technology

Many Applications :

- quantification,
- detection de novo "new gene, new transcript"
- Meta-transcriptomic (TARA Oceans project Genoscope)

1st strategy : mapping RNA-Seq against a genome (transcripts or genome) Reads 1/ Mapping Genome sequence mRNA genes models 2/ Counts Read count per gene model 3/ Quantitative Expression Normalization, Diff Analysis

- + trimming not necessary, time saving
- confidence of gene models or assembly genome, no new genes detected

2nd strategy : de novo Assembly of RNAseq (without reference genome)

- Assembly: not perfect, defined kmer, time and memory consuming

de novo Assembly of RNAseq

From reads assembly to contigs \rightarrow Graph construction methods

Why are de Bruijn graphs useful for genome assembly? Nat Biotechnol. Compeau et al. 2017

Why are de Bruijn graphs useful for genome assembly? Nat Biotechnol. Compeau et al. 2017

Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles

De novo Assembly : 2 methods for Graph path

Hamiltonian: Node= kmer or read; Edge= pairwise between node

- Aligning pairwise = this step is very time/memory consuming
- Path = Cross by all nodes once a time
- \rightarrow Overlap Layout Consensus (OLC method)
- → Tools : newbler, cap3 adapted for 454 sequencing...not adapted to 2nd generation of sequencer

Eulerian: Node = (k-1) mer; Edge = kmer

- Easy to contsruct
- Path = Cross by all edges once a time
- ightarrow Graph de Bruijn method
- \rightarrow Adapted to last NGS with 10 to 40 million of reads (50 to 150 bases)
- \rightarrow using by all popular tools : velvet, Trinity, SOAPdenovo

Bruijn Graph :

"Instead of assigning each k-mer to a node, we will now assign each k-mer located within a read to an edge."

Limits of using Assembly

Time consuming:

for 40 millions of reads with the most popular tool Trinity =index kmer 27bases + graph +contigs.

ightarrow 23h to obtain contigs , Graph construction 6h

Bubbles=complexities in graph

→ Biological reasons

- Errors in read sequences : tools exist to remove some errors
- Natural genotype difference : allelic, polyploidy
- Repetitions : many repeat element in eukaryote
- RNA-Seq :
 - No same coverage by gene
 - Alternative transcripts (splicing alternative)
 - Many graph by gene

Problem of depth sequencing : counts of reads \rightarrow coverage by gene

→ Bowtie2 mapping : 98% of reads mapped

Among 27884 genes on nuclear
chromosomes

1m	> 16507 genes (59%)
5m	> 19041
10m	> 19926
20m	> 20748
30m	> 21177
40m	> 21487
50m	> 21733
55m	> 21739 (78%)

Problem of non uniform gene expression \rightarrow Biased distribution of the reads by gene

Problem of Isoforms : Alternative splicing

Wikipedia source

Arabidopsis : 30% of genes with 2 to 3 mRNA Human : 85% of genes encode isoform proteins

Assembly Results on Arabidopsis RNA-Seq

F1_Mplex			
Nb of PE reads	43 030 388 PE		
Nb of contigs	33 736		
from assembly	(length mean 1360)		
Nb of mapped contigs	33 072		
Genome TAIR10	98%		

Data from Illumina HiSeq2000

- Velvet/oases (kmer 61,71)
- iAssembler

Comparison of annotations TAIR10 annotation versus Contigs from assembly

F1_Mplex		Data from Illumina HiSog2000	
Nb of PE reads	43 030 388 PE	Velvet/oases (kmer 61,71)	
Nb of contigs	33 736 (length mean 1360)	 iAssembler 	
Nb of mapped contigs	33 072		
Genome TAIR10	98%		
Comparaison annotations			
Nb tagged Genes	17 783	 →Gene=Locus	
Nb contigs	32 220 (97%)		
Nb of genes	15 613 (88%)	→ Model of genes with confirmed	
with confirmed structure		exon/intron structure	
Nb Contigs	20 881 (65%) contigs		

Quality of Assembly : contig versus gene annotation

2/3 of contigs correspond to gene structure (partial)

1 gene – 2 or n contigs same gene model

Library Stranded → remove chimeric genes

Quality of Assembly

35% of contigs with other gene models (isoforms)

1 gene – 1 or n contigs with other gene models

 \rightarrow 3% of contigs without annotation = new genes

Conclusion of assembly on transcriptomic and simple model

- → A good quality of contigs, efficient to detect new gene models
- → Problems: distinct false/good gene models,

chimera that increases with read number

With more complex transcriptome/genome

- \rightarrow Can not work: too complex graph path
- \rightarrow Generate too much contigs