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Metabarcoding

A way of studying diversity data for entire communities from envi-
ronmental samples.
Operational Taxonomic Unit (OTU) are identified by sequencing a
standardized region of DNA.
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A typical metagenomic experiment

Amplicon-based sampling. Consider
I n different (bacterial, fungal, ...) species / OTU and
I m different samples / patients / media / conditions.

NGS provides

Yij = number of reads from species i in sample j
∝ abundance of species i in sample j

Question. Can we exhibit some patterns in the distribution of the species
abundances across samples ?
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Bi-clustering problem

Rephrased problem : Find
I groups of species having similar abundance profile across the

samples and
I groups of samples histing the different species in similar proportions.

Bi-clustering problem : Simultaneously determine
I row clusters and
I column clusters

in a n ×m matrix of counts.

J. Aubert 4 / 1



Bi-clustering problem

Rephrased problem : Find
I groups of species having similar abundance profile across the

samples and
I groups of samples histing the different species in similar proportions.

Bi-clustering problem : Simultaneously determine
I row clusters and
I column clusters

in a n ×m matrix of counts.

J. Aubert 4 / 1



Bi-clustering problem

S1 S2 S3 . . . Sj . . . Sm
OTU 1 0 0 0 . . . y1j . . . 3
OTU 2 59 17 43 . . . y2j . . . 3

. . . . . . . . . . . . . . . . . . . . . . . .
OTU i yi1 yi2 yi3 . . . yij . . . yid

. . . . . . . . . . . . . . . . . . . . . . . .
OTU n 90 1 20 123 . . . ynj . . . 2

Seq. depth 4738 5157 6010 . . .
∑n

i=1 yij . . . 5916

yij = number of sequences from sample j assigned to Operational Taxonomic
Unit (OTU) i .
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Approach

Model-based clustering :

→ LBM = Latent Block-Model

(Govaert and Nadif, 2005 ; Brault and Mariadassou, 2015)

Specificities of NGS data :
I count data,
I over dispersed (wrt Poisson),
I with heterogeneous sampling effort (= sequencing depth),
I with high variation among the species abundances,
I possibly with replicates.
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Latent Block Model

Bi-clustering. K species groups, G sample groups
I Zi = group to which species i belongs to (∈ {1, ...K}) ;
I Wj = group to which sample j belongs to (∈ {1, ...G})

both latent = hidden = unobserved.

→ Incomplete data model

Ex : Poisson LBM.

(Zi) iid ∼ π (species prop.)
(Wj) iid ∼ ρ (sample prop.)

(Yij) indep |(Zi); (Wj) ∼ P(λZi Wj )

Does not accommodate for NGS data specificities.
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Over-dispersion

Negative-binomial. Most popular distribution of NGS counts :

Y ∼ NB(λ, φ) E(Y ) = λ, V(Y ) = λ(1 + φλ) ≥ λ.

Gamma-Poisson representation. Take a = 1/φ and draw

U ∼ Gam(a, a), Y | U ∼ P(λU) ⇒ Y ∼ NB(λ, φ).

Negative binomial = Poisson with latent Gamma

→ Incomplete data model (Y is observed, U is not).
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LBM for metagenomic data

Hidden layer :

(Zi) iid ∼ π (species prop.)
(Wj) iid ∼ ρ (sample prop.)
(Uij) iid ∼ Gam(aZi Wj , aZi Wj )

Observed counts : (interest of model-based approaches)

Yij | Z ,W ,U ∼ P
(
µi νj αZi Wj Uij

)
where
I µi : mean abundance of species i
I νj : sequencing depth in sample j (fixed)
I αkg : interaction term between group species k and sample group g .
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LBM for metagenomic data
⇡ ⇢

a

(µ, ⌫, ↵)

Z W

Y

U

1

Figure – The proposed over-dispersed Poisson LBM presented as a directed
graphical model. Legend : observed variables (filled white), latent variables
(filled gray), parameters are outside the box.
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Inference

Aim : Retrieve
I Zi = species group, or at least P(i ∈ k|Y ) ;
I Wj = sample group, or at least P(j ∈ g |Y ) ;

and estimate the interaction parameter α = (αkg ).

Which means (maximum-likelihood approach)
I Compute p(Z ,W ,U|Y ) ;
I Maximize log pθ(Y ), where θ = (α, µ).

Most popular algorithm : EM (Dempster et al., 1977).
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Variational approximation

Species group Zi and sample group Wj are not independent given Yij

→ p(Z ,W ,U | Y ) intractable

Variational approximation (Jordan, 1999). Find

p̃(Z ,W ,U) ' p(Z ,W ,U|Y )
such that p̃(Z ,W ,U) = p̃1(Z ) p̃2(W ) p̃3(U)

(mean-field approximation).

→ Variational EM (VEM) algorithm provide a lower bound

J(Y , p̃, θ̂) ≤ log p
θ̂
(Y ).
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Penalized ’likelihood’ criteria

Penalized criterion. log p
θ̂
(Y ) intractable

log p
θ̂
(Y )− pen(p

θ̂
) → J(Y , p̃, θ̂)− pen(p

θ̂
)

BIC & ICL. H = entropy

penBIC = [(K − 1) log n − (G − 1) log m − KG log(nm)] /2

penICL1 = penBIC +H(p̃Z ) +H(p̃W ) (classification entropy)
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Model comparison

Likelihood ratio for nested models.
M⊂M′, the likelihood ratio is defined as

LR(M,M′) = 2
[
log p(Y; θ̂M′)− log p(Y; θ̂M)

]
.

Interest of block structure.
Mmin :=M1,1 ⊂MK ,G ⊂Mmax :=Mn,m

Lower bounds for likelihood ratios.

(a) : LR(Mmin,MK ,G) ≥ 2
[
J (Y, q̂K ,G , θ̂K ,G)− log p(Y; θ̂1,1)

]
,

(b) : LR(MK ,G ,Mmax) ≤ 2
[
log p(Y; θ̂n,p)− J (Y, q̂K ,G , θ̂K ,G)

]
.
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Three 16S or 18S rRNA amplicon-based datasets

I MetaRhizo : plants and bacteria communities living in their
rhizosphere (collab. C. Mougel, INRA Rennes)

I Oak powdery mildew : bacteria and fungi including Erysiphe
alphitoides living in the phyllosphere (collab. C. Vacher, INRA
Bordeaux)

I Macaroni : microbial community assembly in soil (collab. L.
Philippot, A. Spor, INRA Dijon)

Aim : to understand the structure of these relationships
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Meta-rhizo

Dataset : Medicago truncatula rhizosphere.
I n = 288 bacteria (genus)
I m = 483 samples = rhizosphere of different plants (genotypes)
The total counts per sample go from 29410 to 33840 number of
sequences.
19.2% of data are null
Range from 0 to 5084 with a median = 9 and mean = 110

Results :
I K̂ = 10 groups of bacteria
I Ĝ = 4 groups of samples
I â = 7.29
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MetaRhizo
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Despite νj , bacteria groups correspond to abundance groups.
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MetaRhizo
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Plant groups corresponds to diversity levels (Shannon index).
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MetaRhizo
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MetaRhizo

Goodness of fit.

Table – MetaRhizo data. Goodness-of-fit. LR is the likelihood ratio statistic as
defined in Section and df stands for difference in terms of free parameters.

M,M′ LR(M,M′) df LR(M,M′)/df
Mmin,MKG 37804.75 40 945.12
MKG ,Mmax 143881 139064 1.03
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Oak powdery mildew
Dataset : Pathobiome of the Erysiphe alphitoides (Jakuschkin et al.
2016).
I n = 114 = E. alphitoides +47 fungal +66 bacterial otus
I m = 116 leaves from 3 trees (resistant, intermediate, susceptible)
I 34% of data are null
I Range from 0 to 2228 (median = 2 ; mean = 24.17)
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Oak powdery mildew

Results :
I Common a : (K̂ = 1, Ĝ = 1)
I akg : (K̂ = 5, Ĝ = 3)
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akg

αkg ∈ [0.22; 2.14] (ratio from 1 to 9.6).
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Oak powdery mildew
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Oak powdery mildew

Comments :
I Heterogeneous over-dispersion parameters (akg ),
I Groups reveal the abundance of E. alphitoides (pathogene)
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MicrobiAl Community Assembly Rules and functiONIng
Aim : Identify biotic interactions between microbial groups using a
targeted subtractive approach by removal and enrichment of specific
microbial groups
Data : After filtering steps, 353 OTUs and 347 biological samples (10
treatments)
I 54% of data are null, Mean = 35.3, Max = 10598.
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Approach and methods

1. Ten time dilution of soil suspension filtered at 10 µm to focus on
dominant bacterial groups.

2. Removal, killing or preventing the growth of specific groups
I according to their cell size using filtration (4 size classes)
I by incubating the soil suspension with (i) antibiotics targeting

different groups and (ii) group specific antimicrobial peptides
I according to the membrane properties by subjecting the soil

suspension to osmotic and heat shocks
I enrichment by incubating the soil suspension with inhibitors

3. For each treatment : inoculation into 25 microcosms containing sterilized
soils.

4. Collect after 45 days for molecular and activity analyses.
5. Illumina Miseq sequencing
6. Bioinformatic annalysis with house pipeline (A. Spor)
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Experimental Design
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Selected latent block model
Common a (â = 0.32) : (K̂ = 15, Ĝ = 10)
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Description of groups in columns

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
Chocthermique 0 0 0 0 0 0 25 0 0 0
Ciprofloxacin 1 0 0 24 0 0 0 0 0 0

ControlT0 0 0 0 0 0 0 0 0 0 25
ControlT45 6 0 16 0 3 0 0 0 0 0
Filtrat0.4um 13 10 2 0 0 0 0 0 0 0
Filtre0.4um 17 8 0 0 0 0 0 0 0 0
Filtre0.8um 5 0 0 0 20 0 0 0 0 0
Filtre3um 19 1 0 0 5 0 0 0 0 0

Gentamicin 17 4 3 0 0 0 0 0 0 0
H2O2 1 0 0 0 0 23 0 0 0 0
MAC 0 0 0 0 0 0 0 0 25 0
PEB 0 0 0 0 0 0 0 24 1 0

Ramoplanin 0 0 24 0 0 0 0 0 0 0
RW4 4 18 3 0 0 0 0 0 0 0
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Groups of bacteria
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Heatmap

Before After
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Network representation
I One vertex = one group of microorganism (Zi in blue) or one group

of soil (Wj in orange)
I Incidence matrix : use of αkg matrix (abs. value > 1)
I Edge color : green for negative, purple for positive interactions
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Discussions

Summary
I Parsimonious and complex model enables us to reduce data

dimension
I ICL criteria to select number of groups
I Parameters biologically interpretable
I cobiclust R package

Possible extensions

Comments
I Dispersion parameter
I Normalization
I Zero-inflation
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